[image: image7.jpg]

News Application
We’ve learned a lot of skills that could lend toward making a news application. You can use JavaScript to go through a JSON file and present data based on a user’s input. You’ve learned how to use JavaScript-based charts that you can change, also based on a user’s input. This tutorial will show you a more comprehensive approach to making a news application, one in which you have the ability to look at a full dataset and create pages to represent each line of data. It incorporates mapping features. This approaches the ProPublica model of the far-near view of data.
We’ll be following this tutorial created by Ben Welsh of the LA Times. http://first-news-app.readthedocs.org/ . Ben did this tutorial at NICAR. He used data from the Los Angeles area, deaths during the LA Riots in 1992. We will use a different dataset.
To do this tutorial, you need:

· the Terminal

· a text editor like Text Wrangler

· Python

· the pip package manager

· the virtual environment

We will use Leaflet.js to make the maps. We will check to be sure that each program/package is installed, working on the masscomm login (so we have permissions). We’ll post everything to GitHub at the end. You can find everything in my GitHub, github.com/cindyroyal/news-app-files.
Finding the Data

I found a more local dataset on data.world, one that has a listing of area parks. I worked with the data to remove any problems and to isolate the columns I wanted to use. I had to use the Text to Columns feature in Excel to get the long and lat in different columns. I found the data at https://data.world/cityofaustin/99qw-4ixs. There are 279 parks in the remaining dataset. I even started finding parks images for a few parks, so you can see how it works to include an image in your html. Finally, I added a column with a sequential id by starting the first two rows (1,2), then using the button at the bottom of the cell to continue down the column.
I then saved it as austinparks.csv from Excel, so I could use it in the Tutorial in the same way as in the First News App tutorial.
[image: image1.png]1
2
3
4
5
6
7
8
9

A
GEODB_OID

W NOU A WN R

WWwWwWWNRNRNNNNNNNRRRRRRR R R
PWONPOXNODURWNRLROWDLOON®®GVS-AWNLERO

long
-97.75883915
-97.78953227
-97.67498937
-97.78069465
-97.73599541
-97.6999759
-97.68422161
-97.74728495
-97.66304692
-97.75856024
-97.74688768
-97.73333429
-97.78522838
-97.7806245
-97.68965268
-97.65102145
-97.7421783
-97.74335364
-97.76921913
-97.83260569
-97.72237551
-97.6990881
-97.78771016
-97.74898954
-97.78098508
-97.74789801
-97.78765933
-97.74882059
-97.75642352
-97.71381696
-97.76641625
-97.76851196
-97.68869004

lat
30.25545673
30.42900167
30.27766276
30.359748
30.23398562
30.33286643
30.42470236
30.37682359
30.47292007
30.29517274
30.25165564
30.31347795
30.23447446
30.43061525
30.2779001
30.3947847
30.15544328
30.24708331
30.41753092
30.19351612
30.27551688
30.2376668
30.29201345
30.26450549
30.44956971
30.26754902
30.40467121
30.27717578
30.1965727
30.24913273
30.24189455
30.24093604
30.29886553

D

PARK_ID
312
214
217
218
388
281
310
178
276
361
360
365
272
288
396
398
171
194
226
346
395
260
251
299
387
255
417
381
179
297
273
270
401

PARK_NAME

West Bouldin Creek Greenbelt
Mountain View Neighborhood Park
Norman School Park

North Cat Mountain Greenbeltl

Heritage Oaks Neighborhood Park

St. John's Pocket Park

Wells Creek Greenbelt

Hill School Park

Springbrook Driving Range

Hartford Planting Strip

The Circle ROW Greenbelt

Triangle Commons Neighborhood Park
South Austin Senior Activity Center
Tanglewood Neighborhood Park
Plummers Cemetery

Oertli Neighborhood Park

Grand Meadow Neighborhood Park
Little Stacy Neighborhood Park
Oakview Neighborhood Park

Piney Bend Neighborhood Park
Oakwood Annex Cemetery

Roy G. Guerrero Colorado River Metro Park
Red Bud Isle

Shoal Beach at Town Lake Metro Park
Springwoods Neighborhood Park
Republic Square

ADDRESS

1200 S 6th St., Austin, Texas 78704

9000 Middlebie Rd., Austin, Texas 78750
3901 Tannehill Ln., Austin, Texas 78721
6801 Cat Creek Trl., Austin, Texas 78731
2100 Parker Ln., Austin, Texas 78741

889 Wilks Ave., Austin, Texas 78752

13120 Metric Blvd., Austin, Texas 78727
8405 Tallwood Dr., Austin, Texas 78759
1800 Picadilly Rd., Pflugerville, Texas 78664
2516 Hartford Rd., Austin, Texas 78703
1300 The Circle, Austin, Texas 78704

722 W 46th St., Austin, Texas 78751

3911 Manchaca Rd., Austin, Texas 78704
11409 Rustic Rock Rd., Austin, Texas 78750
1150 Blk of Springdale Rd., Austin, Texas 78721
12613 Blaine Rd., Austin, Texas 78753

8022 Thaxton Dr., Austin, Texas 78747

1500 Alameda Dr., Austin, Texas 78704
10902 Oak View Dr., Austin, Texas 78759
8601 Piney Creek Bnd., Austin, Texas 78745
1509 E MLK Jr Blvd., Austin, Texas 78702
400 Grove Blvd., Austin, Texas 78741

3401 Red Bud Trl., Austin, Texas 78746

707 W Cesar Chavez St., Austin, Texas 78701
9117 Anderson Mill Rd., Austin, Texas 78729
422 Guadalupe St., Austin, Texas 78701

Maggie Boatright Area of the Bull Creek Greenbelt 1958 Spicewood Springs Rd., Austin, Texas 78759

Heath Eiland and Morgan Moss BMX Skate Park
Houston School Park

Longhorn Shores at Town Lake Metro Park
South Austin Tennis Center

South Austin Neighborhood Park

Tannehill Creek Greenbelt

1213 Shoal Creek Blvd., Austin, Texas 78701
5506 Tallow Tree Dr., Austin, Texas 78744
60 S Pleasant Valley Rd., Austin, Texas 78741
1008 Cumberland Rd., Austin, Texas 78704
1100 Cumberland Rd., Austin, Texas 78704
2403 E 51st St., Austin, Texas 78723

G H | J K
ZIP_CODE PARK_ACRES YEAR_OPENPARK_STATU PARK_TYPE
78704 16.8673136 Open Greenbelt
78750 8.27796311 1997 Open Neighborhood
78721 7.08904959 1975 Open School
78731 30.7166135 1986 n_Restricted Greenbelt
78741 3.53193169 2011 Open Neighborhood
78752 0.86356904 1964 Open Pocket
78727 9.24365862 1991 n_Restricted Greenbelt
78759 4.70107593 1975 Open School
78664 53.5789742 1988 Open_Fee Special
78703 1.72721253 1969 Closed nting Strips/Triangles
78704 1.20806081 2008 Open Greenbelt
78751 6.0218528 2005 Open Neighborhood
78704 4.52988616 Open Special
78750 14.1204649 Open Neighborhood
78721 7.12815852 Open_Restricted Cemetery
78753 6.13351119 2013 Planned Neighborhood
78747 9.99401021 1988 Open Neighborhood
78704 6.86158307 1929 Open Neighborhood
78759 6.97521809 1981 Open Neighborhood
78745 4.20313079 Open Neighborhood
78702 18.576733 Open_Restricted Cemetery
78741 399.466583 Open Metropolitan
78746 17.493079 Open Special
78701 15.1151787 Open Metropolitan
78729 12.4514559 Open Neighborhood
78701 1.74910215 Open Special
78759 8.99115991 1996 Open Greenbelt
78701 1.55637564 1931 Open Special
78744 8.56149739 1977 Open School
78741 10.6360616 Open Metropolitan
78704 12.0210417 1980 Open Special
78704 11.7878397 1964 Open Neighborhood
78723 4.58490029 2012 Planned Greenbelt

img
bouldingreenb
mountainview

northcatmoun

B

Starting our News App

So with our edited csv of the parks, we are ready to make an application. We are going to create an application that lists all parks from the csv, maps them and then creates a separate page for each park. Since there are 279 on the list, it would take a really long time to do each of these individually. So, we are going to use the Flask framework to help us. Flask is a Python micro-framework http://flask.pocoo.org/. It differs from a framework like Ruby on Rails in that it is more lightweight, simpler and doesn’t provide a database for you. But that’s fine for this project. We are going to use our csv for the data. We are also going to ultimately “freeze” our site to make a static site – generating all the html pages, so we don’t have to host the site on a Python-enabled server. This will make sense as we go.
The documentation for the First News App explains what you need and how to get it. I have already installed Python, PIP and virtualenv on our computers. PIP lets you install things and the virtualenv sets up an environment that lets us run all the required things we need, basically hosting a lightweight server on our computer while we create the app.

You can do these commands in the Terminal, to check if you have each. Remember that the $ just represents the prompt, so you don’t type it.
$ python --version

$ pip --version

$ virtualenv --version

If you don’t have something, please reference the First News App tutorial to see how to download each item.

Creating our Environment

Start by creating the Virtual Environment. You can navigate in Terminal to anywhere you want to start this app. I am just going to use the root of the user. If you ever need to get to that root in the Finder, click Cmd-Shift-H and it will bring you there. A virtual environment allows you to set up everything you need to work with your program, so you can be working in different versions for different projects.
$ virtualenv parks-app
cd to that folder and turn on the virtual environment with the activate command below. You will need to activate the project each time you need to work on it (you don’t need to create a new virtualenv each time). Notice how the command line looks once you activate. It includes the virtualenv name in parentheses at the beginning of the prompt.

$ cd parks-app
$. bin/activate
Ben’s tutorial uses the touch command to create new files. You can do that, but you can also just create a new file in Text Wrangler when it is necessary. We will be creating two python scripts - app.py and later freeze.py. And we’ll have two html templates - index.html and detail.html.

Installing Flask
For your application, you will need to install Flask.

$ pip install Flask

Go to Text Wrangler and create a new file. Save it in the parks-app directory as app.py. It is VERY important that you save things in the right place. This is the nature of using a framework.

Put this code in the app.py file and save it. This file will do all the routing for us in the application. We’ll be adding to it as we go. We are importing Flask, rendering a template and creating an index page. We are also including the app/route to connect to the root of our site.
from flask import Flask

from flask import render_template

app = Flask(__name__)

@app.route("/")

def index():

 template = 'index.html'

 return render_template(template)

if __name__ == '__main__':

 app.run(debug=True, use_reloader=True)

Now create a templates folder. You can do this through the finder or the Terminal.

$ mkdir templates
Create a file called index.html in the templates folder and put in some text like: Hello World. Make sure to save it. We are just testing to see if it works.

Save and go to the Terminal, run app.py. When we are running the app, we are simulating a python server environment that will allow the framework functions to execute.
$ python app.py

You’ll see some code to indicate the app is running. Go to a browser and open:

localhost:5000

Localhost is the root of your server. This only works when you have started the virtual environment.
Adding the Data

You should see “Hello World” come up in your index page. Congrats. Your app is on its way.
Make a directory called static and include your csv in there. The static directory should be below the parks-app directly. Do this in the Finder, so you can also move over your csv. Remember, if you need to get to the user directory on a Mac, use Cmd-Shift-H
Now make the following changes to app.py. This imports the csv module. The def get_csv() function allows you to open a csv and create objects from the items.

Notice the line that has csv_file = open(csv_path, 'rU'). I added the U to take care of Unicode and newline characters in the data.

Also notice the reference to austinparks.csv. You would change this if you used a different csv.

import csv
from flask import Flask

from flask import render_template

app = Flask(__name__)

def get_csv():

 csv_path = './static/austinparks.csv'

 csv_file = open(csv_path, 'rU')

 csv_obj = csv.DictReader(csv_file)

 csv_list = list(csv_obj)

 return csv_list
@app.route("/")

def index():

 template = 'index.html'

 object_list = get_csv()
 return render_template(template, object_list=object_list)

if __name__ == '__main__':

 app.run(debug=True, use_reloader=True)

Save it.

Then go to the index.html file and remove “Hello World”.

Add this code to the file. This will check to see if any of the data is working.
<!DOCTYPE html>

<html lang="en">

 <head></head>

 <body>

 <h1>Austin Parks</h1>

 {{ object_list }}

 </body>

</html>

The code in the curly braces indicates a call to the csv. Reference that in def index() function in app.py.
If the app is still running, go to the browser at localhost:5000 and refresh. If it is not still running, run the command to start the app again ($ python app.py). You should see the data all jumbled on the screen.
MVC Architecture

Just a note about how Model-View-Controller or MVC architecture works. Most data-based frameworks separate these responsibilities, so that the model speaks to the database and connects to controllers that drive the application. This information is passed to the View which is rendered through the html templates. Learn more at https://realpython.com/blog/python/the-model-view-controller-mvc-paradigm-summarized-with-legos/
Formatting the Data on the Page

Now we will work to format it the data better. Change index.html:
<!DOCTYPE html>

<html lang="en">

 <head>

 </head>

 <body>

 <h1>Austin Parks</h1>

 <table border=1 cellpadding=7>

 <tr>

 <th>Name</th>

 <th>Address</th>
 <th>Acres</th>

 </tr>

 {% for obj in object_list %}

 <tr>

 <td>{{ obj.name }}</td>

 <td>{{ obj.address }}</td>

 <td>{{ obj.acres }}</td>
 </tr>

 {% endfor %}

 </table>

 </body>

</html>

We are creating a table that includes all the items in the csv. The items in the double curly braces represent reading the elements from the csv data. Python/Flask provides the loop right in the html to go through the csv, writing each element as items in the table.

You should be able to reload the localhost:5000 page and see the complete table!
Notice that the id is used to create the url for the detail page for each park. We will create that next.
[image: image2.png]Austin Music Venues

Name Address Acres Year Opened Status Type
West Bouldin Creek Greenbelt 1200 S 6th St., Austin, Texas 78704 16.86731362 Open Greenbelt
Mountain View Neighborhood Park 9000 Middlebie Rd., Austin, Texas 78750 8.27796311 1997 Open Neighborhood
Norman School Park 3901 Tannehill Ln., Austin, Texas 78721 7.08904959 1975 Open School
North Cat Mountain Greenbelt 6801 Cat Creek Trl., Austin, Texas 78731 30.71661354 || 1986 Open_Restricted || Greenbelt
Heritage Oaks Neighborhood Park 2100 Parker Ln., Austin, Texas 78741 3.53193169 2011 Open Neighborhood
St. John's Pocket Park 889 Wilks Ave., Austin, Texas 78752 0.86356904 1964 Open Pocket
Wells Creek Greenbelt 13120 Metric Blvd., Austin, Texas 78727 9.24365862 1991 Open_Restricted || Greenbelt
Hill School Park 8405 Tallwood Dr., Austin, Texas 78759 4.70107593 1975 Open School
Springbrook Driving Range 1800 Picadilly Rd., Pflugerville, Texas 78664 53.57897418 || 1988 Open_Fee Special
Hartford Planting Strip 2516 Hartford Rd., Austin, Texas 78703 1.72721253 || 1969 Closed Planting Strips/Triangles
The Circle ROW Greenbelt 1300 The Circle, Austin, Texas 78704 1.20806081 2008 Open Greenbelt
Triangle Commons Neighborhood Park 722 W 46th St., Austin, Texas 78751 6.0218528 2005 Open Neighborhood
South Austin Senior Activity Center 3911 Manchaca Rd., Austin, Texas 78704 4.52988616 Open Special
Tanglewood Neighborhood Park 11409 Rustic Rock Rd., Austin, Texas 78750 14.12046488 Open Neighborhood
Plummers Cemetery 1150 Blk of Springdale Rd., Austin, Texas 78721 7.12815852 Open_Restricted || Cemetery
Qertli Neighborhood Park 12613 Blaine Rd., Austin, Texas 78753 6.13351119 2013 Planned Neighborhood
Grand Meadow Neighborhood Park 8022 Thaxton Dr., Austin, Texas 78747 9.99401021 1988 Open Neighborhood
Little Stacy Neighborhood Park 1500 Alameda Dr., Austin, Texas 78704 6.86158307 1929 Open Neighborhood
Oakview Neighborhood Park 10902 Oak View Dr., Austin, Texas 78759 6.97521809 1981 Open Neighborhood

Adding the Detail Pages

Next we want those links in the name column to work. They will go to a special page for each park.

In app.py, include this function for the detail section. Do this below the index function but before the final if statement. Pay attention to spacing.
@app.route('/<row_id>/')

def detail(row_id):

 template = 'detail.html'

 object_list = get_csv()

 for row in object_list:

 if row['id'] == row_id:

 return render_template(template, object=row)

We are creating a row id to correspond to the url, looping through the csv to match the url and passing that matching row to the detail template.
Create a file in your templates directory called detail.html and include this in it.

<!DOCTYPE html>

<html lang="en">

 <head>

 </head>

 <body>

 <h1>{{ object.name }}</h1>
 <img src=
 <p>Address: {{ object.address }}</p>

 <p>Acres: {{ object.acres }}</p>

 <p>Year Opened: {{ object.opened }}</p>

 <p>Status: {{ object.status }}</p>

 <p>Type: {{ object.type }}</p>

 </body>

</html>

Save everything. Restart the server (ctrl-C if it is still running) with app.py. Go back to localhost:5000 and refresh. You should see the full table there and be able to click on one of the names to get to its page. The url for the details pages is localhost:5000/1/ … etc. You should see detail pages that look something like this.
[image: image3.png]North Cat Mountain Greenbelt

Address: 6801 Cat Creek Trl., Austin, Texas 78731
Acres: 30.71661354

Year Opened: 1986

Status: Open_Restricted

Type: Greenbelt

Of course, you can, and should add better styling and layout for these pages. This tutorial just goes through the functionality. You can add any html you need in index.html and detail.html, and you should include a stylesheet.
It’s probably a good idea to include links to a stylesheet now, because you can use the templating features to include it on each detail page. Put the code below in detail.html. By putting the css folder in the “static” folder, the app will be able to find it and include it in the build.

<link rel="stylesheet" href="../static/css/style.css" type="text/css" />

This finds the css folder in the static folder above the details pages. This will make sense when we make the static site.

Put this code in the head of the index.html page. This finds the css folder below the parks-app folder.
<link rel="stylesheet" href="static/css/style.css" type="text/css" />

You can add the css folder and style.css in the static folder either before or after you create the static site. Your files are all hooked up!
Adding Images

Some of our parks have images. And we might want to get images from all parks at some point. I have added names of images in the csv. For those without images, I created a placeholder image called no.jpg, and included that in the csv in the img column. The images need to exist somewhere. Create an “img” folder under the “static” folder and place your images in there. As with the css folder, this will be retained in the build below.

You can add a line in detail.html in the html section where you’d like to include the image. See how the script uses both html and Flask to reference the image from the data. Add this code below the name of the park.

Adding Web Addresses
Let’s say you have web addresses in your csv. I found a few for some parks, and then just used the Austin Parks Foundation search page address for the rest. You would want to find urls for all (or most) of the parks (or for whatever data you are using). Include this line in your detail.html page to replace h1 holding the name. This adds the url to the name.
<h1>{{

object.name }}</h1>

Error Handling

Ben’s tutorial also includes the ability to handle errors in the url. The entire app.py should look like this now. See the abort import and statement in the detail function.
import csv

from flask import Flask

from flask import abort
from flask import render_template

app = Flask(__name__)

def get_csv():

 csv_path = './static/austinparks.csv'

 csv_file = open(csv_path, 'rU')

 csv_obj = csv.DictReader(csv_file)

 csv_list = list(csv_obj)

 return csv_list

@app.route("/")

def index():

 template = 'index.html'

 object_list = get_csv()

 return render_template(template, object_list=object_list)

@app.route('/<row_id>/')

def detail(row_id):

 template = 'detail.html'

 object_list = get_csv()

 for row in object_list:

 if row['id'] == row_id:

 return render_template(template, object=row)

 abort(404)
if __name__ == '__main__':

 app.run(debug=True, use_reloader=True)

Try choosing another number for a detail page that doesn’t exist, like localhost:5000/9999/. It gives a “File Not Found” message instead of breaking the app.
Adding the Maps

This is a great app. But it could be even better if we could map those items. We are going to create a map for the index page that maps the location for all the parks and then individual maps for each park page. Bet you’re glad you aren’t coding each one.

For this, we are going to include a nice JavaScript library for mapping called Leaflet.js.
Adding the Map to the Detail Page
To add the map to the detail page, make the following changes in detail.html. It includes the leaflet libraries in the head, the place where the map is drawn in the page (div) and the script to create it. The script relies on the x and y coordinates (longitude and latitude) in the data.
<!DOCTYPE html>

<html lang="en">

<head>

 <link rel="stylesheet" href="https://unpkg.com/leaflet@1.0.3/dist/leaflet.css" />

 <script src="https://unpkg.com/leaflet@1.0.3/dist/leaflet.js"></script>
 </head>

 <body>

 <div id="map" style="width:100%; height:300px;"></div>
 <h1>{{ object.name }}</h1>

 <p>Address: {{ object.address }}</p>

 <p>Acres: {{ object.acres }}</p>

 <p>Year Opened: {{ object.opened }}</p>

 <p>Status: {{ object.status }}</p>

 <p>Type: {{ object.type }}</p>

<script type="text/javascript">

 var map = L.map('map').setView([{{ object.y }}, {{ object.x }}], 16);

 var osmLayer = new L.TileLayer('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

 maxZoom: 18,

 attribution: 'Data, imagery and map information provided by OpenStreetMap and contributors.'

 });

 map.addLayer(osmLayer);

 var marker = L.marker([{{ object.y }}, {{ object.x }}]).addTo(map);

</script>

 </body>

</html>
Reload one of the detail pages to see the maps. You should be able to see a map on every detail page with a pin for the location.
[image: image4.png]?7 ¢ - -.‘.
o

Hancock Golf Course

Address: 811 E 41st St., Austin, Texas 78751
Acres: 50.39607807

Year Opened: 1946

Status: Open_Fee

Type: Golf Course

Adding a Map to the Main Page
Modify index.html to look like this. It includes the leaflet libraries in the head, the place where the map is drawn in the page (div) and the script to create it. The script relies on the x and y coordinates in the data and it even includes the name and link to the individual page in the pin popup. I have adjusted the set view for Austin’s lat and long and an initial zoom level, but the user can zoom and navigate the map on the site. You would adjust these depending on the location of your app.
<!DOCTYPE html>

<html lang="en">

 <head>

 <link rel="stylesheet" href="https://unpkg.com/leaflet@1.0.3/dist/leaflet.css" />

 <script src="https://unpkg.com/leaflet@1.0.3/dist/leaflet.js"></script>

 </head>
<body>

 <div id="map" style="width:100%; height:300px;"></div>
 <h1>Austin Parks</h1>

 <<table border=1 cellpadding=7>

 <tr>

 <th>Name</th>

 <th>Address</th>
 <th>Acres</th>

 </tr>

 {% for obj in object_list %}

 <tr>

 <td>{{ obj.name }}</td>

 <td>{{ obj.address }}</td>

 <td>{{ obj.acres }}</td>
 </tr>

 {% endfor %}

 </table>

<script type="text/javascript">

var map = L.map('map').setView([30.3, -97.7], 10);

var osmLayer = new L.TileLayer('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

maxZoom: 18,

attribution: 'Data, imagery and map information provided by OpenStreetMap and contributors.'

});

map.addLayer(osmLayer);

var data = {

 "type": "FeatureCollection",

 "features": [

{% for obj in object_list %}

{

 "type": "Feature",

 "properties": {

"name": "{{ obj.name }}",

"id": "{{ obj.id }}"

 },

 "geometry": {

"type": "Point",

"coordinates": [{{ obj.x }}, {{ obj.y }}]

 }

}{% if not loop.last %},{% endif %}

{% endfor %}

]

};

var dataLayer = L.geoJson(data, {

 onEachFeature: function(feature, layer) {

 layer.bindPopup(

 '' +

 feature.properties.name +

 ''

);

 }

 });

 map.addLayer(dataLayer);

</script>
</body>

</html>

Reload the page and click a pin. [image: image5.png]- Airport - = proLne Crosviale "=\ Field Vs '~
\
+ H Youn + Fail (re\e k Airport Airfiel + Lexington /
Runrhg Moursuni LA PS + Airfield P
— Ranch 4+ Skye Dance Cotton + /
rpor Airpol (1X52) Patch Airport
+ Lakeway - S
Airpark S /
J Laeeway ,,/
)
Keyes Ranch
Danz Ranch Ve
0 Airport
Airport. é
Johnson
City Aigport Keller.Ranch &
4 Airport Ha;r.ls Ranch,
t
+ l’;ﬁ" Halm Ranch- 4
a Airport
Kennedy
Ranch T Rocky ;DP
atum Ranci
Airport
i Ranch Airport Gornett Field / e
Headwaters Airport s Ranch Rutherford (Leaflet | Data, imagery and map information provided by OpenStreetMap and contributors

Austin Parks

Name

Address

West Bouldin Creek Greenbelt

1200 S 6th St., Austin, Texas 78704

Mountain View Neighborhood Park

9000 Middlebie Rd., Austin, Texas 78750

Norman School Park

3901 Tannehill Ln., Austin, Texas 78721

North Cat Mountain Greenbelt

6801 Cat Creek Trl., Austin, Texas 78731

Heritage Oaks Neighborhood Park

2100 Parker Ln., Austin, Texas 78741

St. John's Pocket Park

889 Wilks Ave., Austin, Texas 78752

Wells Creek Greenbelt

13120 Metric Blvd., Austin, Texas 78727

Hill School Park

8405 Tallwood Dr., Austin, Texas 78759

Springbrook Driving Range

1800 Picadilly Rd., Pflugerville, Texas 78664

Hartford Planting Strip

2516 Hartford Rd., Austin, Texas 78703

How About a Search Field for the Main Page?

Let’s use a little JavaScript to get a search going in the search page. We can use JQuery to provide a nice search capability. Do this before you build this site, so the code will be synchronized for any future builds.
Include the following in index.html below the h2 and above the table. And give your table an id="table1". Don’t forget to include the link to the JQuery library in the <head>.
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
The code includes a form with a text input, some DOM elements to hold the search term and the number that result in the search. Then the script goes gets the value of the search term and converts to lowercase, looks at the value in the first column -- eq(0) -- converted to lowercase, then goes through the table, matches the search term to the first column and either shows or hides the row.

<form id="form1">

<p>Search: <input type="text" id="term" /></p>

<input type="submit" value="submit" />

</form>

<p>Search Term: </p>

<p>Number: </p>

<script>

$(document).ready(function() {

$("#form1").submit(function() {

 j=0;

 $('#table1 tr').hide();

 //convert search term to lowercase

 var searchterm = $("#term").val().toLowerCase();

 $("#answer").html(searchterm);

 //for each row of table...

 $('#table1 tr').each(function() {

 //find the text in the 1st td, convert to lowercase

 var col_search = $(this).find('td').eq(0).text().toLowerCase();

 // if input name is equal to the column name text, then show it

 if (col_search.includes(searchterm)) {

 $(this).show();

 j=j+1;

 }// end if

 else {

 $(this).hide();

 }

 });// end for

 $("#answer2").html(j);

 return false;

});// end submit

});// end ready

</script>

Creating the Static Site

This site is awesome, but we want to host it on the Web. We could try to find a host that could support a Python/Flask environment. We need to do that if we are creating a site that users actively contribute to. But this site is static. We might update parks occasionally, but we’d update the csv and then rerun the app to do that. For this app, we can generate a static site that creates all our pages, and then we can host it on any server (like our Reclaim or Bluehost accounts) that supports HTML, CSS and JavaScript.

To do this, we will use Frozen Flask, a library that saves every page in your app as a flat file. In the Terminal (use Ctrl-C to exit your app, if necessary), run:
$ pip install Frozen-Flask
(you might need to sudo this if you get a permission error)

Create a new file called freeze.py in parks-app directory. Put this code in it.

from flask_frozen import Freezer

from app import app, get_csv

freezer = Freezer(app)

@freezer.register_generator

def detail():

 for row in get_csv():

 yield {'row_id': row['id']}

if __name__ == '__main__':

 freezer.freeze()

Run freeze.py on the command line.
$ python freeze.py

This creates a build folder in which all your static files are located. Look for the build folder in your application in the Finder. The folder has index.html and folders with an index.html for each venue. It also includes the static folder with the csv in it. You can fetch these folders/files to a folder on your website to host the application there!
When you run the static site locally, you will see a directory for the detail pages. This will load the page properly when you host it on your Web server.
[image: image6.png][build

Q_ Search

“
&
M
g8
<
¥
<
&

Name Date Modified v Size Kind
» [l css Today, 2:14 PM -- Folder
?“] style.css Today, 2:13 PM 32 bytes TextWr...ument
@ index.html Today, 2:12 PM 113 KB HTML
» 1239 Today, 2:08 PM - Folder
» [240 Today, 2:08 PM -- Folder
> 24 Today, 2:08 PM - Folder
> B 242 Today, 2:08 PM -- Folder
> [243 Today, 2:08 PM - Folder
> [244 Today, 2:08 PM -- Folder
> [1245 Today, 2:08 PM - Folder
> [m 246 Today, 2:08 PM -- Folder
> W 247 Today, 2:08 PM - Folder
> [248 Today, 2:08 PM -- Folder
> [249 Today, 2:08 PM - Folder
» [250 Today, 2:08 PM -- Folder
> [251 Today, 2:08 PM - Folder
> W 252 Today, 2:08 PM -- Folder
» [m 253 Today, 2:08 PM - Folder
> [254 Today, 2:08 PM -- Folder
» [255 Today, 2:08 PM - Folder
» [256 Today, 2:08 PM -- Folder
» [m 257 Today, 2:08 PM - Folder
» [258 Today, 2:08 PM -- Folder
» [1259 Today, 2:08 PM - Folder
» [260 Today, 2:08 PM -- Folder
> 1261 Today, 2:08 PM - Folder
> W 262 Today, 2:08 PM -- Folder
> [263 Today, 2:08 PM - Folder
> [264 Today, 2:08 PM -- Folder
» [265 Today, 2:08 PM - Folder
o o

That’s it! You have created a beautiful, interactive application for 279 parks around Austin.
Of course, you should now go and commit this entire folder to a new GitHub repository, so you can share it with the world! Create a new repository and follow the instructions to push your entire parks-app directory to it.
Now you can see how all the different things we covered this semester come together. Think about how you could use this process for other types of data, other types of storytelling. Completed files at various stages of this process can be found at github.com/cindyroyal/parks-app.
Now You Try

There’s another dataset in the github repository. It’s music-venues.csv.This is an abbreviated list of Austin music venues, with 19 venues in it. It has columns for name, address, phone, website, twitter, lat and long. And there are images in a folder for each, with names also in a column.
Go through the exercise again, using this dataset. The index.html page should include the name, address and phone for all, with the name and a link on the map. The detail pages should have name with linked url to their website, address, phone, and Twitter with the @name as the text and the url going to their Twitter page. Include the image below the name of the venue.
There are some things you may need to change. There are different variables in this dataset.

Get it to work in Flask, then save out as a static site with freeze.py.

If you have time, add the search capabilities before you run the build.
Give it a try!

Coding and Data Skills

Dr. Cindy Royal	

Texas State University

School of Journalism and Mass Communication

